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Abstract Bayesian inference and bounded rational decision-
making require the accumulation of evidence or utility re-
spectively to transform a prior belief or strategy into a poste-
rior probability distribution over hypotheses or actions. Cru-
cially, this process cannot be simply realized by indepen-
dent integrators, since the different hypotheses and actions
also compete with each other. In continuous time this com-
petitive integration process can be described by a special
case of the replicator equation. Here we investigate simple
analog electric circuits that implement the underlying dif-
ferential equation under the constraint that we only permit
a limited set of building blocks that we regard as biolog-
ically interpretable, such as capacitors, resistors, voltage-
dependent conductances and voltage- or current-controlled
current and voltage sources. The appeal of these circuits is
that they intrinsically perform normalization without requir-
ing an explicit divisive normalization. However, even in ide-
alized simulations, we find that these circuits are very sensi-
tive to internal noise as they accumulate error over time. We
discuss in how far neural circuits could implement these op-
erations that might provide a generic competitive principle
underlying both perception and action.
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1 Introduction

The competition for limited resources is a central theme in
biology. In evolutionary theory the competition for limited
resources enforces the process of natural selection, where
differential reproductive success of different genotypes lets
some genotypes increase their share in the overall popu-
lation, while others are driven to extinction [5]. This pro-
cess can be modeled by the replicator equation that quan-
tifies how the proportion of a particular genotype evolves
over time depending on the fitness of all other genotypes,
such that genotypes achieving more than the average fit-
ness proliferate, and genotypes that perform below average
recede [54, 79]. From a mathematical point of view, each
genotype can be considered as a hypothesis that accumu-
lates evidence and where different hypotheses compete for
probability mass, since the probabilities of all hypotheses
must always sum to unity [67].

Also, ontogenetic processes underlying action and per-
ception are governed by competition for limited resources.
Well-known examples of competition include binocular ri-
valry [73], bistable perception [39], attention [21,23], or af-
fordance competition for action selection [18]. In particular,
the process of perception is often understood as an inference
process where sensory ambiguity is resolved by competing
“hypotheses” that accumulate evidence on the time scale
of several hundred milliseconds [38, 43]. A quantitatively
well-studied example is the random-dot motion paradigm
[12, 30], where subjects observe a cloud of randomly mov-
ing dots with a particular degree of motion coherency be-
fore they have to decide whether the majority of dots moved
to the right or to the left. Depending on the degree of co-
herency this evidence accumulation process proceeds faster
or slower. Moreover in this paradigm, neural responses in
sensory cortical areas have been shown to be consistent with
encoding of log-odds between different hypotheses, thereby



2 Tim Genewein, Daniel A. Braun

reflecting the competitive nature of the evidence accumu-
lation process [30]. Intriguingly, it can be shown that such
a process of competitive evidence accumulation is formally
equivalent to natural selection as modeled by the replicator
dynamics [32, 67].

The problem of acting can be conceptualized in a simi-
lar way as the inference process [26, 37, 58, 71, 72, 74, 77].
An actor chooses between different competing actions and
wants to select the action that will bring the highest benefit.
Even in the absence of any perceptual uncertainty, an actor
with limited information-processing capabilities might not
be able to select the best action—for example, when plan-
ning the next move in a chess game—, because the number
of possibilities exceeds what the decision-maker can con-
sider in a given time frame. Such bounded decision-makers
can sample the action space according to some prior strat-
egy during planning and can only realize strategies that do
not deviate too much from their prior [57, 60]. If this devi-
ation is measured by the relative entropy between prior and
posterior strategy then the competition between actions is
determined by the accumulated utility of each action in the
planning process. In this framework action and perception
can be described by the same variational principle that takes
the form of a free energy functional [11, 28, 56, 59].

In this study we investigate how such competitive ac-
cumulation processes could be physically implemented. In
particular, we are interested in the design of bio-inspired
analog electric circuits that are made of components that are
interpretable in relation to possible neural circuits. The com-
ponents one typically finds in equivalent circuit diagrams of
single neurons in textbooks are capacitors, resistors, voltage-
dependent conductances and voltage sources [20, 52]. In or-
der to allow for relay of currents between different neurons,
we also allow for copy elements implemented by voltage-
or current-controlled current sources that have fixed input-
output relationships. In the following we are interested in
bio-inspired analog circuit designs that implement free en-
ergy optimizing dynamics, but whose components are re-
stricted to this biologically motivated set of building blocks.
From a biological point of view, the appeal of such circuits is
that they intrinsically perform normalization and do not re-
quire an explicit computational step for divisive normaliza-
tion [15]. In particular, we assume in the following that there
is a finite number of incoming input streams that are repre-
sented by time-dependent physical signals. These signals are
accumulated competitively over time by a finite number of
integrators that represent a free energy optimizing posterior
distribution over the integrated inputs. The aim of the paper
is to investigate the biological plausibility of circuit designs
for such competitive evidence accumulation where integra-
tion and competition are implemented in the same process
without the need for a separate process for explicit normal-
ization.

2 Results

2.1 The frequency-independent replicator equation

Both Bayesian inference [7] and decision-making with lim-
ited information processing resources [59] may be written
as an update equation of the following form

pt+1(x) = pt(x)exp(α (∆Wt(x)−∆Ft)) (1)

where ∆Ft =
1
α log∑x pt(x)exp(α∆Wt(x)) is required for nor-

malization and α is a temperature parameter. Equation (1)
describes the update from a prior pt(x) to a posterior pt+1(x).
This update can also be formalized as a variational principle
in the posterior probability, where

pt+1(x) = argmax
q(x)

{
∑
x

q(x)∆Wt(x)−
1
α ∑

x
q(x) log

q(x)
pt(x)

}
(2)

extremizes a free energy functional. In the case of inference,
the distribution pt(x) indicates the prior probability of hy-
pothesis x at time t and ∆Wt(x) = log p(D|x) represents new
evidence that comes in at time t given by the log-likelihood
log p(D|x). In this case, the optimization implicit in Equa-
tion (2) underlies approximate Bayesian inference, and in
particular variational Bayes methods. In the case of acting,
the distribution pt(x) indicates a prior strategy of sampling
actions x and ∆Wt(x) represents the utility gain of choosing
action x. In either case the total utility or total evidence of
x changes from a previous state of absolute utility or evi-
dence Wt(x) to a new value of Wt+1(x) = Wt(x)+∆Wt(x).
The subtraction of the free energy difference ∆Ft leads to
competition between the different hypotheses or actions x—
if ∆Wt(x)> ∆Ft the hypothesis or action x gains probability
mass, if ∆Wt(x)< ∆Ft it loses probability mass, in the case
of ∆Wt(x) = ∆Ft the probability mass remains constant.

One of the problems with Equation (1) is that it is not
straightforward how to implement the computation of the
normalization ∆Ft . However, in continuous time this com-
putation simplifies to computing an expectation value. In the
limit of infinitisimally small time steps in Equation (1) one
arrives at the continuous update equation

∂ p(x, t)
∂ t

= α p(x, t)

(
∂W (x, t)

∂ t
−∑

x′
p(x′, t)

∂W (x′, t)
∂ t

)
.

(3)

Equation (3) is a special case of the replicator equation used
in evolutionary game theory to model population dynam-
ics. In evolutionary game theory, the probability p(x, t) in-
dicates the frequency of type x in the total population at
time t and ∂W (x, t)/∂ t corresponds to a fitness function that
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quantifies the survival success of type x. Types with higher-
than-average fitness will proliferate, types with lower-than-
average fitness will decline [54]. In contrast to Equation (3),
the general form of the replicator equation has a frequency-
dependent fitness function, that is the fitness ∂W (x, p(x, t), t)/∂ t
is a function of p(x, t). However, in the following we will
only consider the restricted case given by Equation (3).

In both theoretical and experimental neuroscience there
is an ongoing debate as to whether the brain directly rep-
resents uncertainty as probabilities or as log-probabilities
[40, 46, 49, 83]. We are therefore also interested in the log-
arithmic version of Equation (3). Introducing the new vari-
able

U(x, t) = log p(x, t) (4)

Equation (3) can be written as

∂U(x, t)
∂ t

= α

(
∂W (x, t)

∂ t
−∑

x′
exp
(
U(x′, t)

) ∂W (x′, t)
∂ t

)
.(5)

Here we have a simple accumulation process U(x, t) with
inputs ∂W (x, t)/∂ t. The advantage of Equation (5) is that
it does not require the explicit computation of the product
between p(x, t) and ∂W (x, t)/∂ t. However, it still requires
computing the expectation value < ∂W/∂ t >p that corre-
sponds to the sum over all the products. The probability
p(x, t) can be obtained from U(x, t) through the exponential
transform at any point in time.

2.2 Equivalent analog circuits

In the following we investigate two classes of bio-inspired
analog circuits that implement Equations (5) and (3) respec-
tively. In particular, we study differences in circuit design
and the robustness properties of the circuits depending on
whether uncertainty is represented in probability space or
log-space. For each of the two implementations we con-
sider two input signal scenarios. The input signals can ei-
ther be represented as currents or voltages to model differ-
ent kinds of sensory encoding and to study in how far this
difference in representation might lead to different circuit
designs. Therefore, we consider four different circuits in the
following: log-space current-input, log-space voltage-input,
p-space current-input, and p-space voltage-input.

A diagram of the first circuit with log-space representa-
tion and current input can be seen in Figure 1. The critical
elements in the circuit are the different capacitive accumula-
tors that integrate Equation (5). As can be seen in Figure 1A
each accumulator receives two input currents. The first input
current I(x, t)—corresponding to ∂W/∂ t in Equation (5)—
is specific for each accumulator. The second input current is
the same for all accumulators and is given by Itotal

CD (t) corre-
sponding to ∑x′ p(x′, t)∂W (x′, t)/∂ t in Equation (5). While

the input current Itotal
CD (t) simply runs through the accumu-

lator unaltered, the input current I(x, t) is fed into a current
divider (CD - see Methods for details) with two branches,
one of which connects to ground through a resistor with
fixed resistance Rleak, while the other branch directs current
through a voltage-dependent resistor RV (x, t) to generate the
weighted output current

ICD(x, t) =
Rleak

Rleak +RV (x, t)
I(x, t). (6)

Figure 1B shows an exemplary full circuit with three capac-
itative accumulators. In the full circuit the output currents
of all accumulators as described by Equation (6) are merged
and added up to the total current

Itotal
CD = ∑

x′

Rleak

Rleak +RV (x′, t)︸ ︷︷ ︸
exp(U(x′,t))

I(x′, t). (7)

The total current Itotal
CD is directed as a baseline through all

accumulators. Comparing Equation (7) and the average in
Equation (5) reveals that the probability weights p(x, t) =
exp(U(x, t)) are given by the fraction of resistances deter-
mining the non-leaked current.

Inside the accumulator the difference between the two
input currents Iacc(x, t)= I(x, t)−Itotal

CD (t) has to be integrated.
In order to ensure that the integration process does not alter
the input currents themselves by putting an extra load on the
input, the integration process has to be electrically isolated,
which can be achieved by generating copies of the input
currents into a separate circuit. These copies can be gener-
ated by two current-controlled current sources that generate
copies of the input currents Itotal

CD (t) and I(x, t) respectively.
The difference between the two currents is then integrated
by a capacitor with capacitance Cint, such that

Vint(x, t) =
1

Cint

∫ {
I(x, t)− Itotal

CD (t)
}

dt. (8)

The voltage Vint(x, t) corresponds to U(x, t) in Equations (5)
and (4) and the capacitance corresponds to 1/α . In line with
Equation (4), the voltage-dependent resistors RV (x, t) de-
pend on this voltage through an exponential characteristic
line

RV (x, t) = Rleak (exp(−Vint(x, t))−1) . (9)

As long as the voltage Vint(x, t) represents log-probabilities
and therefore assumes values between zero and negative in-
finity the resistance RV (x, t) is non-negative and well de-
fined. Such a voltage-dependent resistor could be realized
by a potentiometer with an exponential characteristic or by
using the exponential relationship between current and volt-
age of a varistor or a transistor.

A diagram of the second circuit with log-space represen-
tation and voltage input can be seen in Figure 2. As shown in



4 Tim Genewein, Daniel A. Braun

Fig. 1 Schematic diagram of the log-space circuit with current inputs. A Capacitive accumulator subcircuit consisting of a primary circuit (black
wiring) that with a variable resistor that regulates the output current ICD(x, t) and a secondary circuit (gray wiring) that accumulates the current
difference I(x, t)− Itotal

CD (t) through a capacitor Cint whose voltage adjusts the variable resistor RV (x, t). The input currents of the primary circuit are
copied via current-controlled current sources to the secondary circuit. B Complete example circuit for three different accumulators. The individual
output currents ICD(x, t) are combined into Itotal

CD (t). Schematic element representations are explained in Figure 8.

Figure 2A, each accumulator is operated between two volt-
ages given by the voltage V (x, t)—corresponding to ∂W/∂ t
in Equation (5)—that is specific for the accumulator x and
the voltage VPA(t) that is the same for all accumulators and
corresponds to the weighted average ∑x′ p(x′, t)∂W (x′, t)/∂ t
in Equation (5). As the integration has to be performed by
a capacitor due to the bio-inspired constraints, the voltages
have to be translated into currents, which can be achieved
by voltage-controlled current sources. This will also ensure
that the integrator circuit is isolated as in the previous circuit
and follows the same dynamics as in Equation (8). For illus-
trative purposes the diagram in Figure 2B shows a complete
circuit for three different accumulators. Essentially, the cir-
cuit corresponds to a passive averager (PA - see Methods
for details) that combines multiple voltages each in series
with a voltage-dependent conductance into a common volt-
age given by

VPA(t) = ∑
x

gV (x, t)
∑x′ gV (x′, t)︸ ︷︷ ︸

=:p(x,t)

V (x, t). (10)

A comparison between Equation (10) and the average in
Equation (5) implies that the probability weights p(x, t) are
given by the relative conductance. To fit with Equation (4),
the voltage-dependent conductances gV (x, t) must therefore
have an exponential characteristic line

gV (x, t) ∝ exp(Vint(x, t)) . (11)

In contrast to the previous circuit, the conductance gV (x, t) is
well defined for any value of the integrated voltage. In fact,
changing all conductances by the same multiplicative factor
does not affect the operation of the circuit.

The third and the fourth circuit represent uncertainty di-
rectly in the probability space. Accordingly, they only dif-
fer from the previous circuits in terms of the inner work-
ings of the accumulators, as the inputs ∂W (x, t)/∂ t and the
weighted sum ∑x′ p(x′, t)∂W (x′, t)/∂ t are the same in p-space
and log-space. Figure 3A shows an accumulator in p-space
with external current inputs I(x, t). As in the first circuit,
each accumulator has two inputs given by I(x, t) and Itotal

CD (x, t)
and one output given by ICD(x, t). As in the log-space accu-
mulator, the output ICD(x, t) corresponds to a weighted input
current p(x, t)I(x, t) and this weighting is implemented by a
current divider. Identical to the circuit diagram in Figure 1B,
the output currents of all accumulators are merged into the
total current Itotal

CD (x, t) that is fed back as an input into the ac-
cumulators. In contrast to the log-space accumulator of the
first circuit, inside the p-space accumulator the integral has
to be taken over the weighted difference between the two in-
put currents Iacc(x, t) = p(x, t)

(
I(x, t)− Itotal

CD (t)
)
, where the

weighting with p(x, t) is implemented by another current di-
vider. The voltage-dependent conductances in both current
dividers have to be adjusted according to

RV (x, t) = Rleak

(
1

Vint(x, t)
−1
)
, (12)

as the voltage Vint now directly represents p(x, t) and there-
fore only assumes values in the unit interval. Note that the
leak resistances Rleak in the two current dividers of each ac-
cumulator do not have to be identical, but the variable con-
ductances always have to be adjusted such that the equality

Rleak

Rleak +RV (x, t)
=Vint(x, t) = p(x, t) (13)
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Fig. 2 Schematic diagram of the log-space circuit with voltage inputs. A Capacitive accumulator subcircuit consisting of a primary circuit (black
wiring) with a variable conductance as part of a passive averager and a secondary circuit (gray wiring) that accumulates the voltage difference
V (x, t)−VPA(t) through a capacitor Cint and adjusts the conductance gV (x, t) accordingly. The voltages of the primary circuit are transformed via
voltage-controlled current sources into the currents I(x, t) and Itotal(t) of the secondary circuit. B Complete example circuit for three different
accumulators. The input voltages V (x, t) drive the passive averager of the primary circuit to produce the weighted average voltage VPA. Schematic
element representations are explained in Figure 8.

holds for each current divider. The weighted current of the
inner current divider Iacc(x, t) is copied by a current-controlled
current source and then integrated as a voltage over Cint. The
same voltage Vint(x, t) over the capacitance has to drive both
voltage-dependent conductances in both current dividers in
order to implement Equation (3).

Figure 3B shows an accumulator in p-space where the
external inputs are given as voltages V (x, t). As in the sec-
ond circuit, each accumulator is operated between the two
voltages V (x, t) and VPA(x, t). Identical to the circuit dia-
gram in Figure 2B, voltage VPA is determined by a passive
averager across the different accumulators. As in the sec-
ond circuit, the voltages are transformed into currents when
they enter the accumulators by voltage-controlled current
sources. The important difference to the log-space accumu-
lator of the second circuit is again that in p-space the inte-
gral has to be taken over the weighted difference between
the two currents Iacc(x, t) = p(x, t)

(
I(x, t)− Itotal(t)

)
. This

weighting is implemented by a current divider in an identical
fashion as in the previous circuit shown in Figure 3A. In this
case the voltage-dependent conductance of the current di-
vider follows Equation (12) and the voltage-dependent con-
ductance of the passive averager follows a simple propor-
tionality characteristic given by gV (x, t) ∝ Vint(x, t).

2.3 Simulations

To test the noise robustness of the circuits shown in Fig-
ures 1 to 3, we simulated their dynamics in a Simulink R⃝ en-
vironment with idealized components, which we could se-
lectively perturb by band-limited white noise. Put simply,

these simulations are trying to reproduce competition be-
tween different streams encoding the evidence for alterna-
tive hypotheses without violating the obvious requirement
that the resulting probabilities should sum to one. In our
examples we simulated three different time-varying inputs
∂W (xi, t)/∂ t indexed by x ∈ {x1,x2,x3}. The first input was
a rectangular pulse of 5s with an amplitude of 10−3 A in the
circuits with current-based inputs and 10−3 V in the circuits
with voltage-based inputs. The second input was a rectan-
gular pulse of 2.5s with the same amplitude. The third in-
put was a cosine with amplitude 2× 10−3 A (or V) and a
frequency of 0.19 Hz. The first two inputs mimic the more
usual scenario where evidence is increased over a particu-
lar time window at a constant rate, whereas the third input
is the more unusual scenario with waxing and waning evi-
dence. The first two inputs are integrated into a ramp with
different plateaus, the third input integrates into a sine wave.
The input signals and their integrals are shown in Figure 4.

We simulated all four circuits shown in Figures 1 to 3 un-
der three noise conditions. As a baseline, we first simulated
all circuits without noise and plotted the probability encoded
by the voltage of the integrating capacitors. In case of the
log-space circuits this corresponds to the exponential of the
voltage. In the p-space circuits, the voltage directly encodes
probability. This can be seen in the first column of Figure 5.
In the first 2 seconds the cosine signal has the highest am-
plitude and therefore the highest probability weight, before
it is overtaken by the onset of the two pulses. Eventually, the
longer lasting pulse dominates the probability weighting.

In the second noise condition we added band-limited
white noise on the output currents of all copying elements,
that is all voltage- or current-controlled current sources. The
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Fig. 3 Schematic diagram of the probability-space circuits. Only the accumulators are shown, example circuits are identical to Figure 1B and 2B
respectively. A Capacitive accumulator subcircuit for current-inputs. The accumulator consists of a primary circuit (black wiring) with a variable
resistor and a secondary circuit that accumulates the weighted current difference p(x, t)(I(x, t)− Itotal

CD (t)). The additional weighting (compared
to the log-space circuit) is accomplished by an inner current divider that operates identical to the outer current divider of the primary circuit.
The capacitor Cint integrates the weighted current difference and adjusts the resistors RV (x, t) of the outer and inner current dividers accordingly.
Another current-controlled current source is required to copy the output of the inner current divider in order to isolate the accumulation process
from the rest of the circuit. B Capacitive accumulator subcircuit for voltage-inputs. The accumulator consists of a primary circuit (black wiring)
with a variable conductance that is critical for the passive averager and a secondary circuit (gray wiring) that accumulates the weighted current
difference p(x, t)(I(x, t)− Itotal(t)). The additional weighting (compared to the log-space circuit) is accomplished by an inner current divider that
operates identical to the current-input circuit in panel A. The capacitor Cint integrates the weighted current difference and adjusts the conductance
gV (x, t) of the primary circuit and the resistance RV (x, t) of the inner current divider accordingly. Schematic element representations are explained
in Figure 8.

standard deviation of the noise was 1µA and roughly corre-
sponded to three orders of magnitude below the maximum
input signal. As can be seen from the simulation in the sec-
ond and third column of Figure 5, the noise has very differ-
ent effects in the p-space and log-space circuits. While the
log-space circuits show errors on the order of percentages
in probability space, the p-space circuits fail and completely
leave the range of permissible probability values. The cir-
cuit element in the p-space circuit that is responsible for this
failure is the current-controlled current source that directly
feeds into the integrator. The ultimate reason for this differ-
ence is of course that the integrator voltage in the p-space
circuit is confined between zero and one, whereas the inte-
grator voltage in the log-space circuit can take any negative
value.

In the third noise condition we added band-limited white
noise on the resistance of the voltage-dependent conduc-
tances. The standard deviation of the noise was 50Ω . Ac-
cording to Equation (9) and (12) the voltage-dependent re-
sistance in the circuits with current inputs can decrease to
almost zero for dominant inputs, but can take on values up to
108Ω in our simulations. In contrast, the voltage-dependent
resistance in the circuits with voltage inputs do not have to
regulate their resistance down to zero, but to an arbitrary
baseline resistance—because this baseline resistance can-
cels out in the passive averager. Accordingly, one would ex-
pect the most disruptive effects of noise for dominant inputs

with high probability weighting, but less so in the case of
passive averager circuits that operate on voltage inputs. In
Figure 5 it can be seen that the noise-corrupted probabilities
in the passive averager circuits are much smoother for high
probability weightings than in the current divider circuits.
However, there seems to be no difference in the magnitude
of the errors.

2.4 Implications for possible neural circuits

As already mentioned, there is an ongoing debate about whether
the brain directly represents uncertainty as probabilities or
as surprise, that is log-probabilities. In the previous section,
we have considered both possibilities in different circuit de-
signs. As illustrated in Figure 6, these bio-inspired analog
circuit designs can serve as abstract templates for schematic
neural circuits. Figure 6A shows a free energy optimizing
neural circuit operating in log-space—compare Equation (5).
Input signals are excitatory and integrated by accumulator
neurons that are inhibited at the same time by a pooled in-
hibition signal. To establish this inhibition signal, copies of
all inputs are summed up by an inhibitory neuron that sends
its signal to all accumulator neurons. The most critical op-
eration in this circuit would require that the output signal
U of the accumulator neuron modulates the weighting of
the input signal ∂W/∂ t before it enters the inhibitory unit.
Moreover, this modulation of the input signal would have to
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Fig. 5 Robustness simulation for all circuits. The top two rows show the simulated probabilities p(x, t) = exp(Vint(x, t)) for the log-space circuits—
first row: current input, second row: voltage input. The bottom two rows show the simulated probabilities p(x, t) = Vint(x, t) for the probability-
space circuits—first row: current input, second row: voltage input. The first column shows the results for a noise-free simulation, where all circuits
perform identically and consistent with the replicator equation. The second column shows the results where band-limited white noise was injected
into the copy-elements, that is the current- or voltage-controlled current sources. The magnitude of the noise was identical for all circuits. The
errors with respect to the corresponding noise-free simulation are shown in the third column. The fourth column shows the results where band-
limited white noise was injected into the voltage-dependent resistors. Again the magnitude of the noise was identical for all circuits. The errors
with respect to the corresponding noise free simulation are shown in the last column.

correspond to a multiplicative weighting where the weight-
ing factor is characterized by an exponential dependency on
the excitatory output signal, such that the modulated input
to the inhibitory neuron is given by eU ∂W/∂ t. As U is the
log-probability and therefore always negative, the weight-
ing factor eU could also be interpreted in terms of a synaptic
transmission probability that is modulated by the signal U .

Figure 6B shows a schematic of a free energy optimizing
neural circuit in probability space—compare Equation (3).
The basic principle of the circuit is the same as in Figure 6A.
The important differences between the p-space and log-space
neural circuits are the following. First, the output of the ac-
cumulator neurons represents a probability p instead of the
log-probability U . Second, each accumulator modulates its
own inputs by a multiplicative factor given by the output
activity p—this concerns both the excitatory input ∂W/∂ t
and the inhibitory input < ∂W/∂ t >p. Third, all multiplica-
tive modulations are characterized by weighting factors that
are proportional in p and not exponential as in the log-space
case. Overall, the p-space circuit is more complex with nested

recurrencies that require the simultaneous modulation of mul-
tiple sites in dependence of the same signal p.

In the literature, the dynamics of neural circuits for com-
petitive signal integration are often modeled by drift diffu-
sion processes [8, 10, 13, 36]. In these models momentary
evidence modulates the drift in a Brownian motion process.
Mainly, four different kinds of drift diffusion models are
distinguished: race models [76], mutual inhibition models
[75,80], feed-forward inhibition models [48,66] and pooled
inhibition models [78, 81]. Race models consist of indepen-
dent accumulators without any inhibitory interactions and
can therefore be disregarded in this context. We consider the
other three inhibition models in the following. Linearized
mutual inhibition models may be described by the dynamics

L̇i =−kLi + Ii −w ∑
j ̸=i

L j, (14)

where xi denotes activity of accumulator i, k is a self-inhibition
factor, w is the inhibitory weighting factor between the dif-
ferent neurons, and Ii is the input signal. The corresponding
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Fig. 6 Neural circuit diagrams for competitive signal integration. White triangles represent excitatory units corresponding to different accumulators
x. Gray triangles correspond to inhibitory units. A Replicator-dynamics in log-space according to Equation (5). The little boxes with arrows denote
a multiplicative modulation with an exponential characteristic. B Replicator dynamics in probability-space according to Equation(3). The little
boxes with arrows denote a multiplicative modulation. C Mutual inhibition circuit. The little boxes with arrows denote a fixed weighting. D Pooled
inhibition circuit. The little boxes with arrows denote a fixed weighting. E Feed-forward inhibition. The little boxes with arrows denote a fixed
weighting.

circuit is shown in Figure 6C. Similarly, one can express the
simplified dynamics of a pooled inhibition model as

L̇i =−kLi + Ii −w∑
j

L j, (15)

where all neurons contribute equally to the global inhibitory
signal. The corresponding circuit is shown in Figure 6D. In
contrast, feed-forward inhibition models only modulate their
activity depending on the inputs I, such that

L̇i =−kLi + Ii −w ∑
j ̸=i

I j, (16)

where w indicates the inhibitory effect of input I j on accu-
mulator i. In this case, each input has connections with all
accumulators, of which all but one are inhibitory. The corre-
sponding circuit is shown in Figure 6E.

As the input only enters additively in Equations (14) to
(16), it makes sense to compare these models to the log-
space circuit in Figure 6A. The most obvious difference of
the log-space circuit in Figure 6A from all the other circuits
listed above is that inhibition depends on both the inputs I
and the neural activity U such that

U̇i = Ii −∑
j

eU j I j. (17)

There is no self-inhibition in these dynamics, as the intro-
duction of a decay term −kLi would compromise the nor-
malization ∑i pi = 1 of pi = exp(Ui). Note that none of the
other accumulators is normalized and therefore require a
separate normalization step. Comparing Equation (17) to Equa-
tions (14), (15) and (16) raises the question of how accumu-
lator dynamics of Equations (14) to (16) could approximate
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Fig. 4 Input signals for simulation. A Time course of the three inte-
grated signals W (x, t) indexed by x ∈ {x1,x2,x3}. The signals repre-
sent the evidence of a particular hypothesis or the utility of a particu-
lar action. For x1 and x2 the evidence or utility grows with a constant
rate until saturation is reached. For x3 the evidence or utility is waxing
and waning, following a sine-function. Note that higher values corre-
spond to more probable hypotheses or more desirable actions. A ratio-
nal decision-maker following Equation (19) should thus initially favor
x3. After the onset of x1 and x2 the decision-maker should be indiffer-
ent between these two options but should disfavor x3. After x2 reaches
saturation, x1 should be favored. B Inputs ∂W (x, t)/∂ t which are fed
into the circuits as either currents or voltages and drive the competitive
integration process.

dynamics of the form of Equation (17) that are required for
Bayesian inference and bounded rational decision-making.

Important differences between the dynamics of Equa-
tions (14) to (17) can be illustrated by considering constant
inputs I. For constant inputs Equations (14) to (16) reach
steady-state attractors where L̇i = 0 for all i. In contrast to
these three inhibition models, update Equation (17) does not
reach a steady-state unless all inputs are the same, that is
Ii = I j ∀i, j. This is the case, for example, when all hypothe-
ses have the same likelihood or when all actions lead to the
same increase in utility and therefore the posterior proba-
bilities simply equal the prior probabilities. If the inputs are
not the same in Equation (17) we have the limit behavior
Ui → 0 if i = argmaxi Ii otherwise Ui →−∞. The exponen-
tial exp(Ui) is always bounded by one of the asymptotes 0 or
1. This difference between the models with respect to their
limit behavior originates from the presence or absence of the
decay term −kLi. If this term is omitted in the other models
the Li can also grow without bound both in the positive and
negative direction. However, there are also important differ-
ences between the models even if we disregard the decay
term −kLi. For constant inputs the mutual inhibition model
exhibits exponential growth. In contrast, the feed-forward
inhibition model always has a constant growth rate and the

pooled inhibition model converges to constant growth rates.
The free energy update Equation (17) also converges to con-
stant growth rates and is therefore qualitatively most similar
to the pooled inhibition model. However, both their modu-
lation of the growth rates through the dynamics of Li and Ui
before convergence and the limit values of Li and Ui differ.

Here we have focused on evidence accumulation with a
finite number of accumulators where each accumulator cor-
responds to a different hypothesis. This corresponds to the
scenario that is usually considered by evidence accumula-
tion models based on drift diffusion processes [10, 50]. An
obvious question is of course how to generalize this kind of
setup to continuous hypothesis spaces. For particular fami-
lies of distributions, like for example Gaussian distributions,
one can replace an infinite number of accumulators by a fi-
nite number of sufficient statistics, for example mean and
variance in the case of the Gaussian. This is exploited for
example in Kalman filters and some predictive coding mod-
els [3,27,63]. Other possibilities include representing uncer-
tainty through gain encoding or through convolutional codes
with a finite number of basis functions [40]. Due to the many
possibilities how one could think about a continuous gener-
alization, we restrict ourselves to discrete states in the cur-
rent study.

3 Discussion

In this study we have described four bio-inspired analog cir-
cuit designs implementing the frequency-independent repli-
cator equation. The frequency-independent replicator equa-
tion optimizes a free energy functional and can be used to
describe both competitive evidence accumulation for per-
ception and utility accumulation for action. The bio-inspired
circuits differed in whether they implemented the frequency-
independent replicator equation directly in probability space
or in log-probability space and in whether the input signal
was given as a voltage or as a current. The circuits were de-
signed under the constraint that they should only consist of
a restricted set of electrical components that are biologically
interpretable in the sense that such components are com-
monly used when neural circuitry is schematized by equiva-
lent electrical circuits. Accordingly, we sketch how the two
basic circuit designs for free energy optimization in proba-
bility and log-probability space might translate into neural
wiring in Figure 6. Here we discuss the biological plausibil-
ity of these circuits.

3.1 Biological Plausibility

In standard textbooks [52] neurons are usually modeled as
capacitors that integrate currents over time and that have
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synapses and ion channels that can change their conduc-
tance depending on voltage. Also the neural integrators in
our circuits are modeled as capacitors. The basic design of
the circuits in Figure 6 implies that each neural integrator
receives both excitatory and inhibitory inputs. As all neu-
ral integrators receive the same inhibitory input it is natural
to assume that the inhibitory signals stem from a single in-
hibitory unit that pools copies of all the excitatory inputs and
feeds the resulting inhibitory signal back to the neural inte-
grators. This would imply, however, that inhibitory neurons
mainly perform a spatial integration whereas excitatory neu-
rons would mainly perform a temporal integration. Accord-
ingly, the inhibitory neurons would have to compute their
output quasi instantaneously compared to the time scales of
the input. This very same problem is faced by all pooled in-
hibition models. Here the particular challenge of the circuit
diagrams shown in Figure 6 is the temporal dependence of
the weights for averaging, as the probability weights would
have to change on the same time scale as the inhibitory out-
put activity, that is quasi instantaneously with respect to the
time scales of the input signal.

As already described in the previous section, the criti-
cal operation in the free energy circuits is performed by the
voltage-dependent conductances that regulate how much of
any particular input signal reaches the inhibitory unit. In par-
ticular, in the log-space circuits it would be required that
there is an exponential relation between the voltage signal
and the resulting conductance or transmission probability.
This would be a very particular property to look for in pos-
sible neural substrates. In contrast, this exponential relation-
ship is not required in the p-space circuits. However, their
biological plausibility suffers from two other deficiencies.
First, the circuit design is considerably more complex than
the log-space circuit design in that it requires multiple repli-
cations of the same voltage-dependent conductances that not
only modulate the inputs to the inhibitory units, but also the
inputs to the excitatory neural integrators. Second, as is evi-
dent from the simulations, the p-space circuits are extremely
susceptible to noise.

Another implementation challenge of Equation (5) is that
the most unlikely hypotheses or actions require the accu-
mulation signal U with the strongest magnitude, that is the
highest currents and the highest voltages. This is a natural
consequence of operating in the log-domain, where unex-
pected events are assigned the most resource-intense encod-
ing, such that expected events can be encoded more effi-
ciently [47]. However, when implementing Equation (5) in
a real physical system this problem could be solved natu-
rally, as any physical signal will have a natural minimum
and maximum that is technically feasible. For example, if
the physical signal that is used for representation of Ui has a
natural limit between zero and a minimum −M =− log(L),
that is Ui ∈ [−M;0], then the probability pi = exp(Ui) is con-

fined to the interval 1
L ≤ pi ≤ 1 with a minimum non-zero

probability 1/L assigned to any hypothesis or action. In or-
der to deal with exclusively positive signal ranges, one can
also redefine the representation as xi = log pi + logL which
implies 0 ≤ xi ≤ log(L). This redefined representation has
the convenient effect that improbable hypotheses or actions
are no more associated with the highest signal magnitude,
but with the lowest. Similar cut-offs in the precision of prob-
ability representations are ubiquitous in Bayesian statistics,
for example in the context of Cromwell’s rule or Occam’s
Window.

3.2 Divisive Normalization

An alternative to modeling a single process that accomplishes
signal integration and competition simultaneously, one could
imagine a model where signal integration and competition
are dealt with in separate stages of the process or even as
two separate processes or mechanisms. The integration pro-
cess does not pose any particular problem, but simply cor-
responds to independent integration processes of individ-
ual excitatory signals. In an analog circuit this would cor-
respond as usual to a capacitor that integrates currents into
a voltage. The competition between the different integrated
signals can then be introduced after integration by the appli-
cation of a softmax-function

p(x, t) =
exp(αW (x, t))

∑x′ exp(αW (x′, t))
, (18)

where α is the same temperature parameter as in Equation (1)
and W (x, t) is the integrated signal

∫
∂W . This is the math-

ematical operation of divisive normalization. For example,
Bayesian inference could be achieved in log-space by such
a two-step process, where first log-likelihoods are integrated
or added up over time and in a second step the summed
or integrated signals are squashed through a softmax func-
tion [49]. Importantly, Equation (18) optimizes the free en-
ergy functional of Equation (2) under uniform priors. Non-
uniform priors can be included to yield

p(x, t) =
p(x, t = 0)exp(αW (x, t))

∑x′ p(x′, t = 0)exp(αW (x′, t))
, (19)

where log p(x, t = 0) can be interpreted as the initial state
of the accumulator x. While there exist analog implementa-
tions of the softmax function [25, 41, 84], these implemen-
tations have a circuit design that is not easily interpretable
in terms of equivalent neural circuits. For example, the cir-
cuits in [25] enforce a constant output current that is addi-
tively composed of drain currents from multiple transistors
that are controlled by exponentially weighted gate voltages.
The softmax function is computed by the individual drain
currents. However, in a biological setting a constant output
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current that drives the integration process is not plausible.
Nevertheless, other implementations might be possible.

In neuroscience, divisive normalization has been advanced
as a fundamental neural computation over the last two decades
[15]. It has been suggested as a normalization mechanism
to regulate stimulus sensitivity in the invertebrate olfactory
system [55], the mammalian retina [53], in primary visual
cortex [14, 16] and other cortical areas [33]. However, the
biophysical mechanisms and possible circuit designs that
would support divisive normalization are still under debate
[15]. One of the earliest proposed mechanisms for divisive
normalization is shunting inhibition mediated by synapses
that cause a change in membrane conductance without a ma-
jor change in current flow [64]. For constant input, however,
shunting only has a divisive effect on the membrane poten-
tial in integrate-and-fire models of neural activity, but not on
the firing rate of these neurons [34]. This has led to the more
recent proposal that shunting might be achieved by tem-
porally varying changes in conductance [17, 70]. However,
physiological evidence for this mechanism remains mixed
[15]. Other proposed physiological mechanisms that could
mimic divisive normalization at least for some experimental
data are synaptic depression and modulation of ongoing ac-
tivity to keep membrane potentials closer or further from the
spiking threshold [1, 65]. As divisive normalization seems
to play such a prominent role in biological information pro-
cessing, our circuits might inspire an interesting alternative
that does not require a separate mechanism for normaliza-
tion, but a single process that automatically generates nor-
malized signals. However, as discussed in the previous sec-
tion the biological plausibility of these circuits is certainly
also open for debate.

3.3 Circuits for Bayesian Integration

Several hardware implementations of inference processes
have been proposed in the recent past [42,51,82]. The imple-
mentation of continuous-time Bayesian inference in analog
CMOS circuits, for example, has been recently discussed by
Mroszczyk and Dudek [51]. The authors investigate mes-
sage passing inference schemes in Bayesian networks that
consist of multiple variables that factorize. The analog im-
plementation they propose is based on the Gilbert-multiplier
that is seconded by transistor circuits such that the over-
all multiplier circuit can normalize incoming current sig-
nals. While these circuits are technologically optimized for
accuracy and scalability, the building blocks of these cir-
cuits make a biological interpretation difficult. At the other
end of the spectrum of biological realism, VLSI implemen-
tations of spiking neural networks for real-time inference
have been recently proposed [19]. In contrast, the current
study does not reach the neuromorphic realism of spiking
networks, but starts out by addressing the question of how

free energy optimizing dynamics could be implemented in
circuits that allow for some degree of biological interpreta-
tion. While the direct implementation of such circuits seem
to have received little attention so far, some special cases of
the general replicator equation that correspond to the Lottka-
Volterra equation have been implemented in VLSI to better
understand competitive neural networks [2]. However, the
equivalence between the replicator equation and the Lottka-
Volterra equations does not hold for the frequency-independent
replicator equation and therefore does not concern our re-
sults.

Bayesian inference has been proposed as a fundamental
theory of perception and a considerable number of differ-
ent neural implementations of inference processes have been
proposed in the recent past [4, 22, 40, 44, 45, 62]. However,
one might regard Bayesian inference as a particular instan-
tiation of a more abstract optimization principle given by
the free energy difference in Equation (2), when the util-
ity is given by a log-likelihood [26, 59]. Intriguingly, the
same principle can be generalized to the problem of act-
ing. A decision-maker starts out with a prior strategy and
considers different options with different utilities. When the
set of options is large it might be impossible to consider all
of them, such that the decision-maker has to make a deci-
sion after sampling a few possibilities [57, 60]. Making a
decision based on these samples, the decision maker effec-
tively follows a probabilistic strategy that can be described
by the posterior distribution in Equation (1) optimizing a
trade-off between utility gain and computational cost. The
computational cost is measured by the relative entropy be-
tween prior and posterior strategy. Compared to a perfect
decision-maker, such a decision-maker is bounded rational
since he can only afford a limited amount of information
processing. The principle issues of the proposed circuitries
might therefore be applicable both to perception and action.

One of the main problems of implementing Bayesian in-
tegration is the issue of tractability, which often arises due
to the computation of the normalization constant, especially
when integrating over high-dimensional parameter spaces,
but also, for example when summing over discrete states in
larger-size undirected graphical models. One way to deal
with this kind of problem is to investigate stochastic and
sampling-based approximations of probabilistic update schemes
[22,29,35,61,68,69]. Here we were not primarily interested
in such stochastic implementations, because like many pre-
vious studies we were interested in circuits that integrate a
finite number of given inputs and do not probabilistically
ignore some inputs. Naturally, our circuits then do not pro-
vide a generic solution to Bayesian inference in arbitrary
networks, but rather we have restricted ourselves to the spe-
cial case of competitive evidence accumulation with a finite
number of given inputs. If such input streams are given in
terms of physical signals then computing a weighted aver-
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age by summing over these signals is certainly a tractable
operation. Even though such competitive signal integration
is equivalent to a Bayesian inference process [9], if one were
interested in generic Bayesian inference in possibly continu-
ous and high-dimensional parameter spaces, one would cer-
tainly need to consider some kind of approximation to Equa-
tions (1) and (3)—see for example [57] for a sampling-based
implementation.

3.4 Circuits for Free Energy Optimization

Free energy optimization has been studied previously in Hop-
field networks in the context of memory retrieval and in
Boltzmann machines in the context of learning generative
probabilistic models. Both Hopfield networks and Boltzmann
machines can be described by the same kind of energy func-
tion, only the dynamics of the latter are stochastic. The en-
ergy function

E[s] =−1
2 ∑

i, j
wi jsis j −∑

i
bisi

specifies the desirability of the binary state s = {s1, . . . ,sn}
of all neurons i in the network with si ∈ {−1,+1} under
given parameters wi j and bi. In both networks the dynam-
ics st → st+1 minimize this energy function, which corre-
sponds to a relaxation process into an equilibrium distribu-
tion peq(s) over states s. Thus, the free energy does not play
a direct role in the dynamics. However, if one restricts the
class of equilibrium distributions to special classes of pa-
rameterized separable distributions pθ (s), then one can op-
timize the variational free energy

F(θ) = ∑
s

pθ (s)E[s]+∑
s

pθ (s) log pθ (s)

to find the distribution pθ (s) that most closely matches the
equilibrium distribution peq(s). In the case of Hopfield net-
works this leads for example to a mean field approximation—
compare Chapter 42 in [47].

Apart from the dynamics that govern the state evolution
in these networks, there are also update rules that determine
the parametric weights wi j and bi of the networks during
learning [6]. In Boltzmann machines with hidden units h,
the equilibrium distribution over observable states x is given
by peq(x) = ∑h e−E[(x,h)]/ZE where s = (x,h) and ZE is a
normalization constant. Using the free energy

F(x) =− log∑
h

e−E[(x,h)]

the equilibrium distribution can be expressed as a Boltz-
mann distribution peq(x) = e−F(x)/ZF with normalization

constant ZF . Learning a generative model for x can then be
achieved by updating the parameters wi j with the gradient

∂ log peq(x)
∂wi j

=−∂F(x)
∂wi j

+
∂

∂wi j
logZF

and similarly for the parameters bi. Crucially, however, such
learning updates change the energy function itself by opti-
mizing the log-likelihood of the data. Challenges of physi-
cal implementations of Boltzmann machines have been dis-
cussed in [24].

Both kinds of free energy updates are not directly rel-
evant to our study, as neither the Hopfield network nor the
Boltzmann machine can be used to optimize arbitrary free
energy functions for competitive evidence accumulation. Both
network types have been designed to solve completely dif-
ferent problems—i.e. memory retrieval and generative model
learning. The energy function in these networks describes a
particular recurrent network dynamics and does not consti-
tute an external signal that is integrated over time. In con-
trast, in our circuits we study possible implementations of
the evolution of the posterior distribution for decision-making
or inference resulting from the temporal integration of a time-
dependent external input signal. Unlike the distributions in
Hopfield and Boltzmann machines that relax to equilibrium,
the posterior in our implementations is an equilibrium dis-
tribution at any point in time as long as it follows the dy-
namics of Equation (3). In any physical implementation this
can of course only be approximately true as long as the time
scale of the input signal is slow compared to physical de-
lays etc. In the future it might therefore also be interesting
to study non-equilibrium systems for decision-making and
inference [31].

4 Materials and Methods

All simulations were performed using the Simscape
TM

li-
brary of MATLAB R⃝ R2012b Simulink R⃝. We simulated all
circuits using the numerical solver ode15s.

In the log-space circuit with current inputs shown in Fig-
ure 1 the weighting with p(x, t) is performed by using cur-
rent dividers (CD) with variable resistors. A schematic dia-
gram of the basic current divider principle is shown in Fig-
ure 7B. To compute the weighted average Itotal

CD (t) as given
by Equation (7), each input current I(x, t) in Figure 1B is
fed into a current divider that outputs the weighted current
ICD(x, t) = p(x, t)I(x, t). These currents are then summed
up by connecting the current dividers into a common point
which produces Itotal

CD (t). To ensure proper operation of the
circuit, the voltage-dependent resistors of the current dividers
have to be precisely set according to Equation (9). To simu-
late the log-space circuit with current inputs shown in Fig-
ure 1 we used the following components. We set Cint = 500 µF
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Fig. 7 A Passive averager (PA) circuit. The output voltage Vout is the
weighted average of the voltages V1, V2 and V3, where the weights are
given by the resistors R1, R2 and R3. B Current divider (CD) circuit.
The input current Iin is divided into two currents over the two resistors
R1 and R2 where the magnitude of the current that flows through each
branch is proportional to the conductance of each branch.

for the integrators which corresponds to α = 2 given the
magnitudes of the input currents shown in Figure 4. The in-
tegrator capacitors are initialized with Vint(x, t = 0)=− ln3V≈
−1.0986 V corresponding to p(x, t = 0) = 1/3. The voltage-
dependent resistor is simulated as

RV (x, t) = Rleak(exp(Vint(x, t)/1V)−1), (20)

with Rleak = 100 Ω for the fixed resistor of the current di-
vider.

The probability-space circuit with current inputs shown
in Figure 3A is very similar to the log-space implementation
of Figure 1. The major distinction is that in the probability-
space circuit the difference I(x, t)− Itotal

CD (t) is weighted with
p(x, t) to form the accumulated current Iacc, whereas in the
log-space circuit the difference is directly integrated with-
out an additional weighting. The additional weighting in the
probability-space circuit is accomplished with an inner cur-
rent divider that operates identical to the outer current di-
vider, both of which are adjusted according to Equation (12):

RV (x, t) = Rleak

(
1

Vint(x, t)
1V−1

)
, (21)

with Rleak = 100 Ω for the fixed resistors of the current di-
viders. Note that in the probability-space circuits V int(x, t)
directly corresponds to p(x, t). Therefore the integrator ca-
pacitors are initialized with Vint(x, t = 0)= 1/3V correspond-
ing to p(x, t = 0) = 1/3. The capacitance Cint = 500 µF is
set as in the previous circuit.

In the log-space circuit with voltage inputs shown in Fig-
ure 2 the weighting with p(x, t) and summation over all x is
performed simultaneously by using a passive averager (PA)
with variable conductances. A schematic diagram of the ba-
sic passive averager principle is shown in Figure 7A. To
compute the weighted average VPA(t) as given by Equation
(10), the input voltages V (x, t) in Figure 2B are combined
through a passive averager that produces the weighted volt-
age VPA(x, t) = ∑x′ p(x′, t)V (x′, t). To ensure proper opera-
tion of the circuit, the voltage-dependent conductances of
the passive averager have to be precisely set according to
Equation (11). To simulate the log-space circuit with volt-
age inputs shown in Figure 2 we used the following compo-
nents. We set Cint = 500 µF for the integrators which corre-
sponds to α = 2 given the magnitudes of the input currents
shown in Figure 4. The integrator capacitors are initialized
with Vint(x, t = 0) =− ln3V ≈−1.0986 V corresponding to
p(x, t = 0) = 1/3. The voltage-dependent conductances are
simulated as

gV (x, t) = 100Ω exp(Vint(x, t)/1V). (22)

The probability-space circuit with voltage inputs shown
in Figure 3B is very similar to the log-space implementation
of Figure 2. The major distinction is that in the probability-
space circuit the difference I(x, t)− Itotal(t) is weighted with
p(x, t) to form the accumulated current Iacc, whereas in the
log-space circuit the difference is directly integrated with-
out an additional weighting. The additional weighting in the
probability-space circuit is accomplished with an inner cur-
rent divider that operates identical to the inner current di-
vider of the probability-space circuit with current input and
is adjusted according to Equation (12):

RV (x, t) = Rleak

(
1

Vint(x, t)
1V−1

)
, (23)

with Rleak = 100 Ω for the fixed resistor of the current di-
vider. The outer weighting operation is performed with a
passive averager and thus the voltage-depended conductances
have to be set according to:

gV (x, t) = 100Ω Vint(x, t)/1V. (24)

Note that in the probability-space circuits V int(x, t) directly
corresponds to p(x, t). Therefore the integrator capacitors
are initialized with Vint(x, t = 0) = 1/3V corresponding to
p(x, t = 0) = 1/3. The capacitance Cint = 500 µF is set as in
the previous circuit.

In order to illustrate the robustness of the circuits against
perturbations, we injected noise into the copying-elements—
i.e. the voltage- and current-controlled current sources—and
into the voltage-dependent resistors or conductances. As a
noise source we used the Simulink R⃝ band-limited white
noise block which allows to introduce band-limited white
noise into a continuous system. We set the parameters of the
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Fig. 8 Schematic element representations. The set of biologically in-
terpretable building blocks includes capacitors, resistors, controlled
current sources and voltage-dependent conductances. The circled V in-
dicates a voltmeter. Arrows on currents indicate polarity. The function
f in the variable conductance can represent different mappings depend-
ing on the context.

block to the following values: Noise Power = 0.1 and Sam-
ple Time = 0.1s (see Simulink R⃝ documentation for more in-
formation). Additionally, we scaled the output of the white
noise source with a constant multiplicative factor. In order
to inject noise into the copy-elements we controlled a cur-
rent source with the white noise block and a scaling fac-
tor of 10−6 and injected the output as an additive current
to the current-output of all controlled current-sources. In or-
der to inject noise into the voltage-dependent resistors we
used the white noise block and a scaling factor of 50 and in-
jected the output as an additive component to the setting of
the resistance-value. Additionally, we limited the minimum
value of the resistances to 0Ω .
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